Step of Proof: p-mu_wf
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-mu
wf
:
P
:(
),
x
:(
+ Top). p-mu(
P
;
x
)
latex
by (Unfold `p-mu` ( 0)
)
CollapseTHEN (Auto
)
latex
C
.
Definitions
p-mu(
P
;
x
)
,
,
case
b
of inl(
x
) =>
s
(
x
) | inr(
y
) =>
t
(
y
)
,
x
:
A
B
(
x
)
,
#$n
,
{
i
..
j
}
,
{
x
:
A
|
B
(
x
)}
,
i
j
<
k
,
P
&
Q
,
A
B
,
A
,
b
,
x
:
A
.
B
(
x
)
,
f
(
a
)
,
left
+
right
,
Type
,
Top
,
x
:
A
B
(
x
)
,
,
t
T
,
Lemmas
int
seg
wf
,
le
wf
,
not
wf
,
assert
wf
,
top
wf
,
nat
wf
,
bool
wf
origin